

1.1 Simple Model of the Atom

Question Paper

Course	AQA GCSE Chemistry
Section	1. Atomic Structure & the Periodic Table
Topic	1.1 Simple Model of the Atom
Difficulty	Hard

Time Allowed 60

Score /46

Percentage /100

Question la

This question is about the development of the model of the atom.

Figure 1 shows some important stages in the development of the model of the atom.

Explain how J. J. Thomson's discovery developed the model of the atom.

Question 1b

Ernest Rutherford adapted the model of the atom.

Explain how evidence from Rutherford's experiment led to a development in the model of the atom.

[4 marks]

Question 1c

Explain how Chadwick's experimental work further developed the model of the atom and helped scientists better understand isotopes.

[3 marks]

Question 2a

This question is about atomic structure.

A group of students looks at the diagram below showing the arrangement of electrons in a chemical substance.

The students make the following incorrect or incomplete conclusions:

- Student 1 states that the substance is fluorine, neon or sodium
- Student 2 states that it is not possible to determine which atom or ion the diagram represents
- Student 3 states that the mass number is 10

Explain how students 1 and 2 could combine their ideas to produce **one** possible correct conclusion with an appropriate justification.

[3 marks]

Question 2b

Evaluate student 1's suggestions of fluorine and sodium.
--

[2 marks]

Question 2c

Correct student 3's statement. Explain your reasoning.

[3 marks]

Question 2d

The students are told that the diagram represents $^{25}_{12} Mg^{2+}_{}.$

Describe the additions that should be made to the diagram to show this.

[3 marks]

Question 3a

A scientist produces silicon.

In the first step, the scientist first heats a mixture of sand (silicon dioxide) and magnesium powder.

In the second step, after cooling, the resulting mixture containing magnesium oxide and silicon is placed into a beaker and hydrochloric acid is added.

Write a balanced symbol equation, including state symbols, for the reaction in the first step.

[2 marks]

Question 3b

Write the word equation for the reaction that occurs in the second step.

[1 mark]

Question 3c

Explain how the silicon can be removed from the final reaction mixture.

[1 mark]

Question 3d

During the second step, several gases are also produced.

One of the gases produced is silane, SiH₄, which has a similar structure to methane, CH₄.

Silane spontaneously reacts with oxygen.

$$SiH_4(q) + 2O_2(q) \rightarrow SiO_2(s) + 2H_2O(l)$$

Compare, in terms of energy, the strength of the Si-H bond in silane compared to the C-H bond in methane.

[1 mark]

Question 4a

This question is about mixtures.

Figure 1 shows a chromatogram of the food dyes in a black food colouring.

Figure 1

Describe how a student could obtain a chromatogram similar to the one shown in Figure 1.

[6 marks]

Question 4b

Chromatography is performed on another black food colouring.

This new food colouring contains the same individual dyes as those shown in **Figure 1** but in different proportions.

Predict the appearance of this chromatogram. Justify your answer.

Question 4c

A student prepares a sample of butan-1-ol, which has a boiling point of 118 °C.

The sample contains an impurity with a boiling point of 125 °C.

The student plans to purify the sample using the equipment shown in **Figure 2**.

Explain why this equipment is unsuitable for separating the reaction mixture.

[2 marks]

Question 4d

Explain why cold water should enter the condenser at the lowest point.

Question 5a

This question is about chlorine.

Explain the information given by the numbers in the chemical symbol for chlorine

[3 marks]

Question 5b

Calculate the number of atoms that are present in one mole of chlorine gas.

[2 marks]

Question 5c

Complete the dot and cross diagram to show the covalent bonding in a chlorine molecule, Cl₂.

Show only the electrons in the outer shell.

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Question 5d

The radius of a chlorine atom is approximately $1 \times 10^{-10} \, \text{m}$.

State and explain the difference, if any, between the radius of a chlorine atom and a chloride ion.